Files
freetype/lib/ttraster.c
2023-08-27 18:03:45 +02:00

2728 lines
79 KiB
C

/*******************************************************************
*
* ttraster.c 1.5
*
* The FreeType glyph rasterizer (body).
*
* Copyright 1996-1999 by
* David Turner, Robert Wilhelm, and Werner Lemberg.
*
* This file is part of the FreeType project, and may only be used
* modified and distributed under the terms of the FreeType project
* license, LICENSE.TXT. By continuing to use, modify, or distribute
* this file you indicate that you have read the license and
* understand and accept it fully.
*
* NOTES:
*
* This version supports the following:
*
* - direct grayscaling
* - sub-banding
* - drop-out modes 4 and 5
* - second pass for complete drop-out control (bitmap only)
* - variable precision
*
* Changes between 1.5 and 1.4:
*
* Performance tuning.
*
* Changes between 1.4 and 1.3:
*
* Mainly performance tunings:
*
* - Line_Down() and Bezier_Down() now use the functions Line_Up()
* and Bezier_Up() to do their work.
* - optimized Split_Bezier()
* - optimized linked lists used during sweeps
*
******************************************************************/
#include "ttraster.h"
#include "ttdebug.h"
#include "tttypes.h"
#include "ttengine.h"
#include "ttcalc.h" /* for TT_MulDiv only */
#include "ttmemory.h" /* only used to allocate memory on engine init */
/* required by the tracing mode */
#undef TT_COMPONENT
#define TT_COMPONENT trace_raster
/* The default render pool size */
#define RASTER_RENDER_POOL 64000
/* The size of the two-lines intermediate bitmap used */
/* for anti-aliasing */
#define RASTER_GRAY_LINES 2048
#define Raster_Err_None TT_Err_Ok
#define Raster_Err_Not_Ini TT_Err_Raster_Not_Initialized
#define Raster_Err_Overflow TT_Err_Raster_Pool_Overflow
#define Raster_Err_Neg_Height TT_Err_Raster_Negative_Height
#define Raster_Err_Invalid TT_Err_Raster_Invalid_Value
#define Raster_Err_Gray_Unsupported TT_Err_Raster_Gray_Unsupported
/* FMulDiv means "Fast MulDiv", it is uses in case where 'b' is typically */
/* a small value and the result of (a*b) is known to fit in 32 bits. */
#define FMulDiv( a, b, c ) ( (a) * (b) / (c) )
/* On the other hand, SMulDiv is for "Slow MulDiv", and is used typically */
/* for clipping computations. It simply uses the TT_MulDiv() function */
/* defined in "ttcalc.h" */
/* */
/* So, the following definition fits the bill nicely, and we don't need */
/* to use the one in 'ttcalc' anymore, even for 16-bit systems... */
#define SMulDiv TT_MulDiv
/* Define DEBUG_RASTER if you want to generate a debug version of the */
/* rasterizer. This will progressively draw the glyphs while all the */
/* computation are done directly on the graphics screen (the glyphs */
/* will be inverted). */
/* Note that DEBUG_RASTER should only be used for debugging with b/w */
/* rendering, not with gray levels. */
/* The definition of DEBUG_RASTER should appear in the file */
/* "ttconfig.h". */
#ifdef DEBUG_RASTER
extern Char* Vio; /* A pointer to VRAM or display buffer */
#endif
/* The rasterizer is a very general purpose component, please leave */
/* the following redefinitions there (you never know your target */
/* environment). */
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#ifndef NULL
#define NULL (void*)0
#endif
#define MaxBezier 32 /* The maximum number of stacked Bezier curves. */
/* Setting this constant to more than 32 is a */
/* pure waste of space. */
#define Pixel_Bits 6 /* fractional bits of *input* coordinates */
/* States of each line, arc and profile */
enum TStates_
{
Unknown,
Ascending,
Descending,
Flat
};
typedef enum TStates_ TStates;
struct TProfile_;
typedef struct TProfile_ TProfile;
typedef TProfile* PProfile;
struct TProfile_
{
TT_F26Dot6 X; /* current coordinate during sweep */
PProfile link; /* link to next profile - various purpose */
PStorage offset; /* start of profile's data in render pool */
Int flow; /* Profile orientation: Asc/Descending */
Long height; /* profile's height in scanlines */
Long start; /* profile's starting scanline */
UShort countL; /* number of lines to step before this */
/* profile becomes drawable */
PProfile next; /* next profile in same contour, used */
/* during drop-out control */
};
typedef PProfile TProfileList;
typedef PProfile* PProfileList;
/* I use the classic trick of two dummy records for the head and tail */
/* of a linked list; this reduces tests in insertion/deletion/sorting. */
/* NOTE: used during sweeps only. */
/* Simple record used to implement a stack of bands, required */
/* by the sub-banding mechanism */
struct TBand_
{
Short y_min; /* band's minimum */
Short y_max; /* band's maximum */
};
typedef struct TBand_ TBand;
#define AlignProfileSize \
(( sizeof(TProfile)+sizeof(long)-1 ) / sizeof(long))
/* Left fill bitmask */
static const Byte LMask[8] =
{ 0xFF, 0x7F, 0x3F, 0x1F, 0x0F, 0x07, 0x03, 0x01 };
/* Right fill bitmask */
static const Byte RMask[8] =
{ 0x80, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE, 0xFF };
/* prototypes used for sweep function dispatch */
typedef void Function_Sweep_Init( RAS_ARGS Short* min,
Short* max );
typedef void Function_Sweep_Span( RAS_ARGS Short y,
TT_F26Dot6 x1,
TT_F26Dot6 x2,
PProfile left,
PProfile right );
typedef void Function_Sweep_Step( RAS_ARG );
/* NOTE: These operations are only valid on 2's complement processors */
#define FLOOR( x ) ( (x) & -ras.precision )
#define CEILING( x ) ( ((x) + ras.precision - 1) & -ras.precision )
#define TRUNC( x ) ( (signed long)(x) >> ras.precision_bits )
#define FRAC( x ) ( (x) & (ras.precision - 1) )
#define SCALED( x ) ( ((x) << ras.scale_shift) - ras.precision_half )
#ifdef DEBUG_RASTER
#define DEBUG_PSET Pset()
#else
#define DEBUG_PSET
#endif
struct TPoint_
{
Long x, y;
};
typedef struct TPoint_ TPoint;
/* Note that I have moved the location of some fields in the */
/* structure to ensure that the most used variables are used */
/* at the top. Thus, their offset can be coded with less */
/* opcodes, and it results in a smaller executable. */
struct TRaster_Instance_
{
Int precision_bits; /* precision related variables */
Int precision;
Int precision_half;
Long precision_mask;
Int precision_shift;
Int precision_step;
Int precision_jitter;
Int scale_shift; /* == precision_shift for bitmaps */
/* == precision_shift+1 for pixmaps */
PStorage buff; /* The profiles buffer */
PStorage sizeBuff; /* Render pool size */
PStorage maxBuff; /* Profiles buffer size */
PStorage top; /* Current cursor in buffer */
TT_Error error;
PByte flags; /* current flags table */
PUShort outs; /* current outlines table */
UShort nPoints; /* number of points in current glyph */
Short nContours; /* number of contours in current glyph */
Int numTurns; /* number of Y-turns in outline */
TPoint* arc; /* current Bezier arc pointer */
UShort bWidth; /* target bitmap width */
PByte bTarget; /* target bitmap buffer */
PByte gTarget; /* target pixmap buffer */
Long lastX, lastY, minY, maxY;
UShort num_Profs; /* current number of profiles */
Bool fresh; /* signals a fresh new profile which */
/* 'start' field must be completed */
Bool joint; /* signals that the last arc ended */
/* exactly on a scanline. Allows */
/* removal of doublets */
PProfile cProfile; /* current profile */
PProfile fProfile; /* head of linked list of profiles */
PProfile gProfile; /* contour's first profile in case */
/* of impact */
TStates state; /* rendering state */
TT_Raster_Map target; /* description of target bit/pixmap */
Long traceOfs; /* current offset in target bitmap */
Long traceG; /* current offset in target pixmap */
Short traceIncr; /* sweep's increment in target bitmap */
Short gray_min_x; /* current min x during gray rendering */
Short gray_max_x; /* current max x during gray rendering */
/* dispatch variables */
Function_Sweep_Init* Proc_Sweep_Init;
Function_Sweep_Span* Proc_Sweep_Span;
Function_Sweep_Span* Proc_Sweep_Drop;
Function_Sweep_Step* Proc_Sweep_Step;
TT_Vector* coords;
Byte dropOutControl; /* current drop_out control method */
Byte grays[5]; /* Palette of gray levels used for render */
Byte* gray_lines; /* Intermediate table used to render the */
/* graylevels pixmaps. */
/* gray_lines is a buffer holding two */
/* monochrome scanlines */
Short gray_width; /* width in bytes of one monochrome */
/* intermediate scanline of gray_lines. */
/* Each gray pixel takes 2 bits long there */
/* The gray_lines must hold 2 lines, thus with size */
/* in bytes of at least 'gray_width*2' */
Bool second_pass; /* indicates wether a horizontal pass */
/* should be performed to control drop-out */
/* accurately when calling Render_Glyph. */
/* Note that there is no horizontal pass */
/* during gray rendering. */
TPoint arcs[2 * MaxBezier + 1]; /* The Bezier stack */
TBand band_stack[16]; /* band stack used for sub-banding */
Int band_top; /* band stack top */
Int count_table[256]; /* Look-up table used to quickly count */
/* set bits in a gray 2x2 cell */
};
#ifdef TT_CONFIG_OPTION_STATIC_RASTER
static TRaster_Instance cur_ras;
#define ras cur_ras
#else
#define ras (*raster)
#endif /* TT_STATIC_RASTER */
#ifdef DEBUG_RASTER
/************************************************/
/* */
/* Pset: */
/* */
/* Used for debugging only. Plots a point */
/* in VRAM during rendering (not afterwards). */
/* */
/* NOTE: This procedure relies on the value */
/* of cProfile->start, which may not */
/* be set when Pset is called sometimes. */
/* This will usually result in a dot */
/* plotted on the first screen scanline */
/* (far away its original position). */
/* */
/* This "bug" reflects nothing wrong */
/* in the current implementation, and */
/* the bitmap is rendered correctly, */
/* so don't panic if you see 'flying' */
/* dots in debugging mode. */
/* */
/* - David */
/* */
/************************************************/
static void Pset( RAS_ARG )
{
Long o;
Long x;
x = ras.top[-1];
switch ( ras.cProfile->flow )
{
case TT_Flow_Up:
o = Vio_ScanLineWidth *
( ras.top-ras.cProfile->offset + ras.cProfile->start ) +
( x / (ras.precision*8) );
break;
case TT_Flow_Down:
o = Vio_ScanLineWidth *
( ras.cProfile->start-ras.top + ras.cProfile->offset ) +
( x / (ras.precision*8) );
break;
}
if ( o > 0 )
Vio[o] |= (unsigned)0x80 >> ( (x/ras.precision) & 7 );
}
static void Clear_Band( RAS_ARGS Int y1, Int y2 )
{
MEM_Set( Vio + y1*Vio_ScanLineWidth, (y2-y1+1)*Vio_ScanLineWidth, 0 );
}
#endif /* DEBUG_RASTER */
/************************************************************************/
/* */
/* Function: Set_High_Precision */
/* */
/* Description: Sets precision variables according to param flag. */
/* */
/* Input: High set to True for high precision (typically for */
/* ppem < 18), false otherwise. */
/* */
/************************************************************************/
static void Set_High_Precision( RAS_ARGS Bool High )
{
if ( High )
{
ras.precision_bits = 10;
ras.precision_step = 128;
ras.precision_jitter = 24;
}
else
{
ras.precision_bits = 6;
ras.precision_step = 32;
ras.precision_jitter = 2;
}
PTRACE7(( "Set_High_Precision(%s)\n", High ? "true" : "false" ));
ras.precision = 1 << ras.precision_bits;
ras.precision_half = ras.precision / 2;
ras.precision_shift = ras.precision_bits - Pixel_Bits;
ras.precision_mask = -ras.precision;
}
/****************************************************************************/
/* */
/* Function: New_Profile */
/* */
/* Description: Creates a new Profile in the render pool. */
/* */
/* Input: aState state/orientation of the new Profile */
/* */
/* Returns: SUCCESS on success. */
/* FAILURE in case of overflow or of incoherent Profile. */
/* */
/****************************************************************************/
static Bool New_Profile( RAS_ARGS TStates aState )
{
if ( !ras.fProfile )
{
ras.cProfile = (PProfile)ras.top;
ras.fProfile = ras.cProfile;
ras.top += AlignProfileSize;
}
if ( ras.top >= ras.maxBuff )
{
ras.error = Raster_Err_Overflow;
return FAILURE;
}
switch ( aState )
{
case Ascending:
ras.cProfile->flow = TT_Flow_Up;
PTRACE7(( "New ascending profile = %lx\n", (long)ras.cProfile ));
break;
case Descending:
ras.cProfile->flow = TT_Flow_Down;
PTRACE7(( "New descending profile = %lx\n", (long)ras.cProfile ));
break;
default:
PTRACE0(( "Invalid profile direction in Raster:New_Profile !!\n" ));
ras.error = Raster_Err_Invalid;
return FAILURE;
}
ras.cProfile->start = 0;
ras.cProfile->height = 0;
ras.cProfile->offset = ras.top;
ras.cProfile->link = (PProfile)0;
ras.cProfile->next = (PProfile)0;
if ( !ras.gProfile )
ras.gProfile = ras.cProfile;
ras.state = aState;
ras.fresh = TRUE;
ras.joint = FALSE;
return SUCCESS;
}
/****************************************************************************/
/* */
/* Function: End_Profile */
/* */
/* Description: Finalizes the current Profile. */
/* */
/* Input: None */
/* */
/* Returns: SUCCESS on success. */
/* FAILURE in case of overflow or incoherency. */
/* */
/****************************************************************************/
static Bool End_Profile( RAS_ARG )
{
Long h;
PProfile oldProfile;
h = ras.top - ras.cProfile->offset;
if ( h < 0 )
{
PTRACE0(( "Negative height encountered in End_Profile!\n" ));
ras.error = Raster_Err_Neg_Height;
return FAILURE;
}
if ( h > 0 )
{
PTRACE1(( "Ending profile %lx, start = %ld, height = %ld\n",
(long)ras.cProfile, ras.cProfile->start, h ));
oldProfile = ras.cProfile;
ras.cProfile->height = h;
ras.cProfile = (PProfile)ras.top;
ras.top += AlignProfileSize;
ras.cProfile->height = 0;
ras.cProfile->offset = ras.top;
oldProfile->next = ras.cProfile;
ras.num_Profs++;
}
if ( ras.top >= ras.maxBuff )
{
PTRACE1(( "overflow in End_Profile\n" ));
ras.error = Raster_Err_Overflow;
return FAILURE;
}
ras.joint = FALSE;
return SUCCESS;
}
/****************************************************************************/
/* */
/* Function: Insert_Y_Turn */
/* */
/* Description: Insert a salient into the sorted list placed on top */
/* of the render pool */
/* */
/* Input: New y scanline position */
/* */
/****************************************************************************/
static
Bool Insert_Y_Turn( RAS_ARGS Int y )
{
PStorage y_turns;
Int y2, n;
n = ras.numTurns-1;
y_turns = ras.sizeBuff - ras.numTurns;
/* look for first y value that is <= */
while ( n >= 0 && y < y_turns[n] )
n--;
/* if it is <, simply insert it, ignore if == */
if ( n >= 0 && y > y_turns[n] )
while ( n >= 0 )
{
y2 = y_turns[n];
y_turns[n] = y;
y = y2;
n--;
}
if ( n < 0 )
{
if (ras.maxBuff <= ras.top)
{
ras.error = Raster_Err_Overflow;
return FAILURE;
}
ras.maxBuff--;
ras.numTurns++;
ras.sizeBuff[-ras.numTurns] = y;
}
return SUCCESS;
}
/****************************************************************************/
/* */
/* Function: Finalize_Profile_Table */
/* */
/* Description: Adjusts all links in the Profiles list. */
/* */
/* Input: None */
/* */
/* Returns: None. */
/* */
/****************************************************************************/
static
Bool Finalize_Profile_Table( RAS_ARG )
{
Int bottom, top;
UShort n;
PProfile p;
n = ras.num_Profs;
if ( n > 1 )
{
p = ras.fProfile;
while ( n > 0 )
{
if ( n > 1 )
p->link = (PProfile)( p->offset + p->height );
else
p->link = NULL;
switch ( p->flow )
{
case TT_Flow_Down:
bottom = p->start - p->height+1;
top = p->start;
p->start = bottom;
p->offset += p->height-1;
break;
case TT_Flow_Up:
default:
bottom = p->start;
top = p->start + p->height-1;
}
if ( Insert_Y_Turn( RAS_VARS bottom ) ||
Insert_Y_Turn( RAS_VARS top+1 ) )
return FAILURE;
p = p->link;
n--;
}
}
else
ras.fProfile = NULL;
return SUCCESS;
}
/****************************************************************************/
/* */
/* Function: Split_Bezier */
/* */
/* Description: Subdivides one Bezier arc into two joint */
/* sub-arcs in the Bezier stack. */
/* */
/* Input: None (subdivided bezier is taken from the top of the */
/* stack). */
/* */
/* Returns: None. */
/* */
/* */
/* Note: This routine is the 'beef' of this component. It is _the_ */
/* inner loop that should be optimized to hell to get the */
/* best performance. */
/* */
/****************************************************************************/
static void Split_Bezier( TPoint* base )
{
Long a, b;
base[4].x = base[2].x;
b = base[1].x;
a = base[3].x = ( base[2].x + b ) / 2;
b = base[1].x = ( base[0].x + b ) / 2;
base[2].x = ( a + b ) / 2;
base[4].y = base[2].y;
b = base[1].y;
a = base[3].y = ( base[2].y + b ) / 2;
b = base[1].y = ( base[0].y + b ) / 2;
base[2].y = ( a + b ) / 2;
/* hand optimized. gcc doesn't seem too good at common expression */
/* substitution and instruction scheduling ;-) */
}
/****************************************************************************/
/* */
/* Function: Push_Bezier */
/* */
/* Description: Clears the Bezier stack and pushes a new arc on top of it. */
/* */
/* Input: x1,y1 x2,y2 x3,y3 new Bezier arc */
/* */
/* Returns: None. */
/* */
/****************************************************************************/
static void Push_Bezier( RAS_ARGS Long x1, Long y1,
Long x2, Long y2,
Long x3, Long y3 )
{
ras.arc = ras.arcs;
ras.arc[2].x = x1; ras.arc[2].y = y1;
ras.arc[1].x = x2; ras.arc[1].y = y2;
ras.arc[0].x = x3; ras.arc[0].y = y3;
}
/****************************************************************************/
/* */
/* Function: Line_Up */
/* */
/* Description: Computes the x-coordinates of an ascending line segment */
/* and stores them in the render pool. */
/* */
/* Input: x1,y1,x2,y2 Segment start (x1,y1) and end (x2,y2) points */
/* */
/* Returns: SUCCESS on success. */
/* FAILURE on Render Pool overflow. */
/* */
/****************************************************************************/
static Bool Line_Up( RAS_ARGS Long x1, Long y1,
Long x2, Long y2,
Long miny, Long maxy )
{
Long Dx, Dy;
Int e1, e2, f1, f2, size; /* XXX: is `Short' sufficient? */
Long Ix, Rx, Ax;
PStorage top;
Dx = x2 - x1;
Dy = y2 - y1;
if ( Dy <= 0 || y2 < miny || y1 > maxy )
return SUCCESS;
if ( y1 < miny )
{
/* Take care : miny-y1 can be a very large value, we use */
/* a slow MulDiv function to avoid clipping bugs */
x1 += SMulDiv( Dx, miny - y1, Dy );
e1 = TRUNC( miny );
f1 = 0;
}
else
{
e1 = TRUNC( y1 );
f1 = FRAC( y1 );
}
if ( y2 > maxy )
{
/* x2 += FMulDiv( Dx, maxy - y2, Dy ); UNNECESSARY */
e2 = TRUNC( maxy );
f2 = 0;
}
else
{
e2 = TRUNC( y2 );
f2 = FRAC( y2 );
}
if ( f1 > 0 )
{
if ( e1 == e2 ) return SUCCESS;
else
{
x1 += FMulDiv( Dx, ras.precision - f1, Dy );
e1 += 1;
}
}
else
if ( ras.joint )
{
ras.top--;
ras.joint = FALSE;
}
ras.joint = ( f2 == 0 );
if ( ras.fresh )
{
ras.cProfile->start = e1;
ras.fresh = FALSE;
}
size = e2 - e1 + 1;
if ( ras.top + size >= ras.maxBuff )
{
ras.error = Raster_Err_Overflow;
return FAILURE;
}
if ( Dx > 0 )
{
Ix = (ras.precision*Dx) / Dy;
Rx = (ras.precision*Dx) % Dy;
Dx = 1;
}
else
{
Ix = -( (ras.precision*-Dx) / Dy );
Rx = (ras.precision*-Dx) % Dy;
Dx = -1;
}
Ax = -Dy;
top = ras.top;
while ( size > 0 )
{
*top++ = x1;
DEBUG_PSET;
x1 += Ix;
Ax += Rx;
if ( Ax >= 0 )
{
Ax -= Dy;
x1 += Dx;
}
size--;
}
ras.top = top;
return SUCCESS;
}
static Bool Line_Down( RAS_ARGS Long x1, Long y1,
Long x2, Long y2,
Long miny, Long maxy )
{
Bool result, fresh;
fresh = ras.fresh;
result = Line_Up( RAS_VARS x1, -y1, x2, -y2, -maxy, -miny );
if ( fresh && !ras.fresh )
ras.cProfile->start = -ras.cProfile->start;
return result;
}
/****************************************************************************/
/* */
/* Function: Bezier_Up */
/* */
/* Description: Computes thes x-coordinates of an ascending bezier arc */
/* and stores them in the render pool. */
/* */
/* Input: None. The arc is taken from the top of the Bezier stack. */
/* */
/* Returns: SUCCESS on success. */
/* FAILURE on Render Pool overflow. */
/* */
/****************************************************************************/
static Bool Bezier_Up( RAS_ARGS Long miny, Long maxy )
{
Long y1, y2, e, e2, e0;
Short f1;
TPoint* arc;
TPoint* start_arc;
PStorage top;
arc = ras.arc;
y1 = arc[2].y;
y2 = arc[0].y;
top = ras.top;
if ( y2 < miny || y1 > maxy )
goto Fin;
e2 = FLOOR( y2 );
if ( e2 > maxy )
e2 = maxy;
e0 = miny;
if ( y1 < miny )
e = miny;
else
{
e = CEILING( y1 );
f1 = FRAC( y1 );
e0 = e;
if ( f1 == 0 )
{
if ( ras.joint )
{
top--;
ras.joint = FALSE;
}
*top++ = arc[2].x;
DEBUG_PSET;
e += ras.precision;
}
}
if ( ras.fresh )
{
ras.cProfile->start = TRUNC( e0 );
ras.fresh = FALSE;
}
if ( e2 < e )
goto Fin;
if ( ( top + TRUNC( e2 - e ) + 1 ) >= ras.maxBuff )
{
ras.top = top;
ras.error = Raster_Err_Overflow;
return FAILURE;
}
start_arc = arc;
while ( arc >= start_arc && e <= e2 )
{
ras.joint = FALSE;
y2 = arc[0].y;
if ( y2 > e )
{
y1 = arc[2].y;
if ( y2 - y1 >= ras.precision_step )
{
Split_Bezier( arc );
arc += 2;
}
else
{
*top++ = arc[2].x + FMulDiv( arc[0].x - arc[2].x,
e - y1,
y2 - y1 );
DEBUG_PSET;
arc -= 2;
e += ras.precision;
}
}
else
{
if ( y2 == e )
{
ras.joint = TRUE;
*top++ = arc[0].x;
DEBUG_PSET;
e += ras.precision;
}
arc -= 2;
}
}
Fin:
ras.top = top;
ras.arc -= 2;
return SUCCESS;
}
/****************************************************************************/
/* */
/* Function: Bezier_Down */
/* */
/* Description: Computes the x-coordinates of a descending bezier arc */
/* and stores them in the render pool. */
/* */
/* Input: None. Arc is taken from the top of the Bezier stack. */
/* */
/* Returns: SUCCESS on success. */
/* FAILURE on Render Pool overflow. */
/* */
/****************************************************************************/
static Bool Bezier_Down( RAS_ARGS Long miny, Long maxy )
{
TPoint* arc = ras.arc;
Bool result, fresh;
arc[0].y = -arc[0].y;
arc[1].y = -arc[1].y;
arc[2].y = -arc[2].y;
fresh = ras.fresh;
result = Bezier_Up( RAS_VARS -maxy, -miny );
if ( fresh && !ras.fresh )
ras.cProfile->start = -ras.cProfile->start;
arc[0].y = -arc[0].y;
return result;
}
/****************************************************************************/
/* */
/* Function: Line_To */
/* */
/* Description: Injects a new line segment and adjusts Profiles list. */
/* */
/* Input: x, y : segment endpoint (start point in LastX,LastY) */
/* */
/* Returns: SUCCESS on success. */
/* FAILURE on Render Pool overflow or Incorrect Profile. */
/* */
/****************************************************************************/
static Bool Line_To( RAS_ARGS Long x, Long y )
{
/* First, detect a change of direction */
switch ( ras.state )
{
case Unknown:
if ( y > ras.lastY )
{
if ( New_Profile( RAS_VARS Ascending ) ) return FAILURE;
}
else
{
if ( y < ras.lastY )
if ( New_Profile( RAS_VARS Descending ) ) return FAILURE;
}
break;
case Ascending:
if ( y < ras.lastY )
{
if ( End_Profile( RAS_VAR ) ||
New_Profile( RAS_VARS Descending ) ) return FAILURE;
}
break;
case Descending:
if ( y > ras.lastY )
{
if ( End_Profile( RAS_VAR ) ||
New_Profile( RAS_VARS Ascending ) ) return FAILURE;
}
break;
default:
;
}
/* Then compute the lines */
switch ( ras.state )
{
case Ascending:
if ( Line_Up ( RAS_VARS ras.lastX, ras.lastY,
x, y, ras.minY, ras.maxY ) )
return FAILURE;
break;
case Descending:
if ( Line_Down( RAS_VARS ras.lastX, ras.lastY,
x, y, ras.minY, ras.maxY ) )
return FAILURE;
break;
default:
;
}
ras.lastX = x;
ras.lastY = y;
return SUCCESS;
}
/****************************************************************************/
/* */
/* Function: Bezier_To */
/* */
/* Description: Injects a new bezier arc and adjusts the profile list. */
/* */
/* Input: x, y : arc endpoint (start point in LastX, LastY) */
/* Cx, Cy : control point */
/* */
/* Returns: SUCCESS on success. */
/* FAILURE on Render Pool overflow or Incorrect Profile. */
/* */
/****************************************************************************/
static Bool Bezier_To( RAS_ARGS Long x,
Long y,
Long cx,
Long cy )
{
Long y1, y2, y3, x3;
TStates state_bez;
Push_Bezier( RAS_VARS ras.lastX, ras.lastY, cx, cy, x, y );
do
{
y1 = ras.arc[2].y;
y2 = ras.arc[1].y;
y3 = ras.arc[0].y;
x3 = ras.arc[0].x;
/* first, categorize the bezier arc */
if ( y1 == y2 )
{
if ( y2 == y3 )
state_bez = Flat;
else if ( y2 > y3 )
state_bez = Descending;
else
state_bez = Ascending;
}
else if ( y1 > y2 )
{
if ( y2 >= y3 )
state_bez = Descending;
else
state_bez = Unknown;
}
else if ( y2 <= y3 )
state_bez = Ascending;
else
state_bez = Unknown;
/* split non-monotonic arcs, ignore flat ones, or */
/* computes the up and down ones */
switch ( state_bez )
{
case Flat:
ras.arc -= 2;
break;
case Unknown:
Split_Bezier( ras.arc );
ras.arc += 2;
break;
default:
/* detect a change of direction */
if ( ras.state != state_bez )
{
if ( ras.state != Unknown )
if ( End_Profile( RAS_VAR ) ) return FAILURE;
if ( New_Profile( RAS_VARS state_bez ) ) return FAILURE;
}
/* compute */
switch ( ras.state )
{
case Ascending:
if ( Bezier_Up ( RAS_VARS ras.minY, ras.maxY ) )
return FAILURE;
break;
case Descending:
if ( Bezier_Down( RAS_VARS ras.minY, ras.maxY ) )
return FAILURE;
break;
default:
;
}
}
} while ( ras.arc >= ras.arcs );
ras.lastX = x3;
ras.lastY = y3;
return SUCCESS;
}
/****************************************************************************/
/* */
/* Function: Decompose_Curve */
/* */
/* Description: Scans the outline arays in order to emit individual */
/* segments and beziers by calling Line_To() and Bezier_To(). */
/* It handles all weird cases, like when the first point */
/* is off the curve, or when there are simply no 'on' */
/* points in the contour! */
/* */
/* Input: first, last : indexes of first and last point in */
/* contour. */
/* */
/* Returns: SUCCESS on success. */
/* FAILURE on error. */
/* */
/****************************************************************************/
#undef SWAP_
#define SWAP_(x,y) { Long swap = x; x = y; y = swap; }
static Bool Decompose_Curve( RAS_ARGS UShort first,
UShort last,
Bool flipped )
{
Long x, y; /* current point */
Long cx, cy; /* current Bezier control point */
Long mx, my; /* current middle point */
Long x_first, y_first; /* first point's coordinates */
Long x_last, y_last; /* last point's coordinates */
UShort index; /* current point's index */
Bool on_curve; /* current point's state */
x_first = SCALED( ras.coords[first].x );
y_first = SCALED( ras.coords[first].y );
if ( flipped ) SWAP_( x_first,y_first );
x_last = SCALED( ras.coords[last].x );
y_last = SCALED( ras.coords[last].y );
if ( flipped ) SWAP_( x_last,y_last );
ras.lastX = cx = x_first;
ras.lastY = cy = y_first;
on_curve = (ras.flags[first] & 1);
index = first;
/* check first point to determine origin */
if ( !on_curve )
{
/* first point is off the curve. Yes, this happens... */
if ( ras.flags[last] & 1 )
{
ras.lastX = x_last; /* start at last point if it */
ras.lastY = y_last; /* is on the curve */
}
else
{
/* if both first and last points are off the curve, */
/* start at their middle and record its position */
/* for closure */
ras.lastX = (ras.lastX + x_last)/2;
ras.lastY = (ras.lastY + y_last)/2;
x_last = ras.lastX;
y_last = ras.lastY;
}
}
/* now process each contour point individually */
while ( index < last )
{
index++;
x = SCALED( ras.coords[index].x );
y = SCALED( ras.coords[index].y );
if ( flipped ) SWAP_( x, y );
if ( on_curve )
{
/* the previous point was on the curve */
on_curve = ( ras.flags[index] & 1 );
if ( on_curve )
{
/* two successive on points => emit segment */
if ( Line_To( RAS_VARS x, y ) ) return FAILURE;
}
else
{
/* else, keep current control point for next bezier */
cx = x;
cy = y;
}
}
else
{
/* the previous point was off the curve */
on_curve = ( ras.flags[index] & 1 );
if ( on_curve )
{
/* reaching an `on' point */
if ( Bezier_To( RAS_VARS x, y, cx, cy ) ) return FAILURE;
}
else
{
/* two successive `off' points => create middle point */
mx = ( cx + x ) / 2;
my = ( cy + y ) / 2;
if ( Bezier_To( RAS_VARS mx, my, cx, cy ) ) return FAILURE;
cx = x;
cy = y;
}
}
}
/* end of contour, close curve cleanly */
if ( ras.flags[first] & 1 )
{
if ( on_curve )
return Line_To( RAS_VARS x_first, y_first );
else
return Bezier_To( RAS_VARS x_first, y_first, cx, cy );
}
else
if ( !on_curve )
return Bezier_To( RAS_VARS x_last, y_last, cx, cy );
return SUCCESS;
}
/****************************************************************************/
/* */
/* Function: Convert_Glyph */
/* */
/* Description: Converts a glyph into a series of segments and arcs */
/* and makes a Profiles list with them. */
/* */
/* Input: _xCoord, _yCoord : coordinates tables. */
/* */
/* Uses the 'Flag' table too. */
/* */
/* Returns: SUCCESS on success. */
/* FAILURE if any error was encountered during rendering. */
/* */
/****************************************************************************/
static Bool Convert_Glyph( RAS_ARGS int flipped )
{
Short i;
UShort start;
PProfile lastProfile;
ras.fProfile = NULL;
ras.joint = FALSE;
ras.fresh = FALSE;
ras.maxBuff = ras.sizeBuff - AlignProfileSize;
ras.numTurns = 0;
ras.cProfile = (PProfile)ras.top;
ras.cProfile->offset = ras.top;
ras.num_Profs = 0;
start = 0;
for ( i = 0; i < ras.nContours; i++ )
{
ras.state = Unknown;
ras.gProfile = NULL;
if ( Decompose_Curve( RAS_VARS start, ras.outs[i], flipped ) )
return FAILURE;
start = ras.outs[i] + 1;
/* We must now see if the extreme arcs join or not */
if ( ( FRAC( ras.lastY ) == 0 &&
ras.lastY >= ras.minY &&
ras.lastY <= ras.maxY ) )
if ( ras.gProfile && ras.gProfile->flow == ras.cProfile->flow )
ras.top--;
/* Note that ras.gProfile can be nil if the contour was too small */
/* to be drawn. */
lastProfile = ras.cProfile;
if ( End_Profile( RAS_VAR ) ) return FAILURE;
/* close the 'next profile in contour' linked list */
if ( ras.gProfile )
lastProfile->next = ras.gProfile;
}
if (Finalize_Profile_Table( RAS_VAR ))
return FAILURE;
return (ras.top < ras.maxBuff ? SUCCESS : FAILURE );
}
/************************************************/
/* */
/* Init_Linked */
/* */
/* Inits an empty linked list. */
/* */
/************************************************/
static void Init_Linked( TProfileList* l )
{
*l = NULL;
}
/************************************************/
/* */
/* InsNew : */
/* */
/* Inserts a new Profile in a linked list. */
/* */
/************************************************/
static void InsNew( PProfileList list,
PProfile profile )
{
PProfile *old, current;
Long x;
old = list;
current = *old;
x = profile->X;
while ( current )
{
if ( x < current->X )
break;
old = &current->link;
current = *old;
}
profile->link = current;
*old = profile;
}
/*************************************************/
/* */
/* DelOld : */
/* */
/* Removes an old Profile from a linked list. */
/* */
/*************************************************/
static void DelOld( PProfileList list,
PProfile profile )
{
PProfile *old, current;
old = list;
current = *old;
while ( current )
{
if ( current == profile )
{
*old = current->link;
return;
}
old = &current->link;
current = *old;
}
/* we should never get there, unless the Profile was not part of */
/* the list. */
}
/************************************************/
/* */
/* Update : */
/* */
/* Update all X offsets of a drawing list */
/* */
/************************************************/
static void Update( PProfile first )
{
PProfile current = first;
while ( current )
{
current->X = *current->offset;
current->offset += current->flow;
current->height--;
current = current->link;
}
}
/************************************************/
/* */
/* Sort : */
/* */
/* Sorts a trace list. In 95%, the list */
/* is already sorted. We need an algorithm */
/* which is fast in this case. Bubble sort */
/* is enough and simple. */
/* */
/************************************************/
static void Sort( PProfileList list )
{
PProfile *old, current, next;
/* First, set the new X coordinate of each profile */
Update( *list );
/* Then sort them */
old = list;
current = *old;
if ( !current )
return;
next = current->link;
while ( next )
{
if ( current->X <= next->X )
{
old = &current->link;
current = *old;
if ( !current )
return;
}
else
{
*old = next;
current->link = next->link;
next->link = current;
old = list;
current = *old;
}
next = current->link;
}
}
/***********************************************************************/
/* */
/* Vertical Sweep Procedure Set : */
/* */
/* These three routines are used during the vertical black/white */
/* sweep phase by the generic Draw_Sweep() function. */
/* */
/***********************************************************************/
static void Vertical_Sweep_Init( RAS_ARGS Short* min, Short* max )
{
switch ( ras.target.flow )
{
case TT_Flow_Up:
ras.traceOfs = *min * ras.target.cols;
ras.traceIncr = ras.target.cols;
break;
default:
ras.traceOfs = ( ras.target.rows - 1 - *min ) * ras.target.cols;
ras.traceIncr = -ras.target.cols;
}
ras.gray_min_x = 0;
ras.gray_max_x = 0;
}
static void Vertical_Sweep_Span( RAS_ARGS Short y,
TT_F26Dot6 x1,
TT_F26Dot6 x2,
PProfile left,
PProfile right )
{
Long e1, e2;
Short c1, c2;
Short f1, f2;
Byte* target;
/* Drop-out control */
e1 = TRUNC( CEILING( x1 ) );
if ( x2-x1-ras.precision <= ras.precision_jitter )
e2 = e1;
else
e2 = TRUNC( FLOOR( x2 ) );
if ( e2 >= 0 && e1 < ras.bWidth )
{
if ( e1 < 0 ) e1 = 0;
if ( e2 >= ras.bWidth ) e2 = ras.bWidth-1;
c1 = (Short)(e1 >> 3);
c2 = (Short)(e2 >> 3);
f1 = e1 & 7;
f2 = e2 & 7;
if ( ras.gray_min_x > c1 ) ras.gray_min_x = c1;
if ( ras.gray_max_x < c2 ) ras.gray_max_x = c2;
target = ras.bTarget + ras.traceOfs + c1;
if ( c1 != c2 )
{
*target |= LMask[f1];
if ( c2 > c1 + 1 )
MEM_Set( target + 1, 0xFF, c2 - c1 - 1 );
target[c2 - c1] |= RMask[f2];
}
else
*target |= ( LMask[f1] & RMask[f2] );
}
}
static void Vertical_Sweep_Drop( RAS_ARGS Short y,
TT_F26Dot6 x1,
TT_F26Dot6 x2,
PProfile left,
PProfile right )
{
Long e1, e2;
Short c1, f1;
/* Drop-out control */
e1 = CEILING( x1 );
e2 = FLOOR ( x2 );
if ( e1 > e2 )
{
if ( e1 == e2 + ras.precision )
{
switch ( ras.dropOutControl )
{
case 1:
e1 = e2;
break;
case 4:
e1 = CEILING( (x1 + x2 + 1) / 2 );
break;
case 2:
case 5:
/* Drop-out Control Rule #4 */
/* The spec is not very clear regarding rule #4. It */
/* presents a method that is way too costly to implement */
/* while the general idea seems to get rid of 'stubs'. */
/* */
/* Here, we only get rid of stubs recognized when: */
/* */
/* upper stub: */
/* */
/* - P_Left and P_Right are in the same contour */
/* - P_Right is the successor of P_Left in that contour */
/* - y is the top of P_Left and P_Right */
/* */
/* lower stub: */
/* */
/* - P_Left and P_Right are in the same contour */
/* - P_Left is the successor of P_Right in that contour */
/* - y is the bottom of P_Left */
/* */
/* FIXXXME : uncommenting this line solves the disappearing */
/* bit problem in the '7' of verdana 10pts, but */
/* makes a new one in the 'C' of arial 14pts */
/* if ( x2-x1 < ras.precision_half ) */
{
/* upper stub test */
if ( left->next == right && left->height <= 0 ) return;
/* lower stub test */
if ( right->next == left && left->start == y ) return;
}
/* check that the rightmost pixel isn't set */
e1 = TRUNC( e1 );
c1 = (Short)(e1 >> 3);
f1 = e1 & 7;
if ( e1 >= 0 && e1 < ras.bWidth &&
ras.bTarget[ras.traceOfs + c1] & (0x80 >> f1) )
return;
if ( ras.dropOutControl == 2 )
e1 = e2;
else
e1 = CEILING( (x1 + x2 + 1) / 2 );
break;
default:
return; /* unsupported mode */
}
}
else
return;
}
e1 = TRUNC( e1 );
if ( e1 >= 0 && e1 < ras.bWidth )
{
c1 = (Short)(e1 >> 3);
f1 = e1 & 7;
if ( ras.gray_min_x > c1 ) ras.gray_min_x = c1;
if ( ras.gray_max_x < c1 ) ras.gray_max_x = c1;
ras.bTarget[ras.traceOfs + c1] |= (Char)(0x80 >> f1);
}
}
static void Vertical_Sweep_Step( RAS_ARG )
{
ras.traceOfs += ras.traceIncr;
}
/***********************************************************************/
/* */
/* Horizontal Sweep Procedure Set : */
/* */
/* These three routines are used during the horizontal black/white */
/* sweep phase by the generic Draw_Sweep() function. */
/* */
/***********************************************************************/
static void Horizontal_Sweep_Init( RAS_ARGS Short* min, Short* max )
{
/* nothing, really */
}
static void Horizontal_Sweep_Span( RAS_ARGS Short y,
TT_F26Dot6 x1,
TT_F26Dot6 x2,
PProfile left,
PProfile right )
{
Long e1, e2;
PByte bits;
Byte f1;
if ( x2-x1 < ras.precision )
{
e1 = CEILING( x1 );
e2 = FLOOR ( x2 );
if ( e1 == e2 )
{
bits = ras.bTarget + (y >> 3);
f1 = (Byte)(0x80 >> (y & 7));
e1 = TRUNC( e1 );
if ( e1 >= 0 && e1 < ras.target.rows )
{
if ( ras.target.flow == TT_Flow_Down )
bits[(ras.target.rows-1 - e1) * ras.target.cols] |= f1;
else
bits[e1 * ras.target.cols] |= f1;
}
}
}
#if 0
e2 = TRUNC( e2 );
if ( e2 >= 0 && e2 < ras.target.rows )
if ( ras.target.flow == TT_Flow_Down )
bits[(ras.target.rows-1-e2) * ras.target.cols] |= f1;
else
bits[e2 * ras.target.cols] |= f1;
#endif
}
static void Horizontal_Sweep_Drop( RAS_ARGS Short y,
TT_F26Dot6 x1,
TT_F26Dot6 x2,
PProfile left,
PProfile right )
{
Long e1, e2;
PByte bits;
Byte f1;
/* During the horizontal sweep, we only take care of drop-outs */
e1 = CEILING( x1 );
e2 = FLOOR ( x2 );
if ( e1 > e2 )
{
if ( e1 == e2 + ras.precision )
{
switch ( ras.dropOutControl )
{
case 1:
e1 = e2;
break;
case 4:
e1 = CEILING( (x1 + x2 + 1) / 2 );
break;
case 2:
case 5:
/* Drop-out Control Rule #4 */
/* The spec is not very clear regarding rule #4. It */
/* presents a method that is way too costly to implement */
/* while the general idea seems to get rid of 'stubs'. */
/* */
/* rightmost stub test */
if ( left->next == right && left->height <= 0 ) return;
/* leftmost stub test */
if ( right->next == left && left->start == y ) return;
/* check that the rightmost pixel isn't set */
e1 = TRUNC( e1 );
bits = ras.bTarget + (y >> 3);
f1 = (Byte)(0x80 >> (y & 7));
if ( ras.target.flow == TT_Flow_Down )
bits += (ras.target.rows-1-e1) * ras.target.cols;
else
bits += e1 * ras.target.cols;
if ( e1 >= 0 &&
e1 < ras.target.rows &&
*bits & f1 )
return;
if ( ras.dropOutControl == 2 )
e1 = e2;
else
e1 = CEILING( (x1 + x2 + 1) / 2 );
break;
default:
return; /* unsupported mode */
}
}
else
return;
}
bits = ras.bTarget + (y >> 3);
f1 = (Byte)(0x80 >> (y & 7));
e1 = TRUNC( e1 );
if ( e1 >= 0 && e1 < ras.target.rows )
{
if (ras.target.flow==TT_Flow_Down)
bits[(ras.target.rows-1-e1) * ras.target.cols] |= f1;
else
bits[e1 * ras.target.cols] |= f1;
}
}
static void Horizontal_Sweep_Step( RAS_ARG )
{
/* Nothing, really */
}
#ifdef TT_CONFIG_OPTION_GRAY_SCALING
/***********************************************************************/
/* */
/* Vertical Gray Sweep Procedure Set: */
/* */
/* These two routines are used during the vertical gray-levels */
/* sweep phase by the generic Draw_Sweep() function. */
/* */
/* */
/* NOTES: */
/* */
/* - The target pixmap's width *must* be a multiple of 4. */
/* */
/* - you have to use the function Vertical_Sweep_Span() for */
/* the gray span call. */
/* */
/***********************************************************************/
static void Vertical_Gray_Sweep_Init( RAS_ARGS Short* min, Short* max )
{
*min = *min & -2;
*max = ( *max + 3 ) & -2;
ras.traceOfs = 0;
switch ( ras.target.flow )
{
case TT_Flow_Up:
ras.traceG = (*min / 2) * ras.target.cols;
ras.traceIncr = ras.target.cols;
break;
default:
ras.traceG = (ras.target.rows-1 - *min/2) * ras.target.cols;
ras.traceIncr = -ras.target.cols;
}
ras.gray_min_x = ras.target.cols;
ras.gray_max_x = -ras.target.cols;
}
static void Vertical_Gray_Sweep_Step( RAS_ARG )
{
Int c1, c2;
PByte pix, bit, bit2;
Int* count = ras.count_table;
Byte* grays;
ras.traceOfs += ras.gray_width;
if ( ras.traceOfs > ras.gray_width )
{
pix = ras.gTarget + ras.traceG + ras.gray_min_x * 4;
grays = ras.grays;
if ( ras.gray_max_x >= 0 )
{
if ( ras.gray_max_x >= ras.target.width )
ras.gray_max_x = ras.target.width-1;
if ( ras.gray_min_x < 0 )
ras.gray_min_x = 0;
bit = ras.bTarget + ras.gray_min_x;
bit2 = bit + ras.gray_width;
c1 = ras.gray_max_x - ras.gray_min_x;
while ( c1 >= 0 )
{
c2 = count[*bit] + count[*bit2];
if ( c2 )
{
pix[0] = grays[(c2 & 0xF000) >> 12];
pix[1] = grays[(c2 & 0x0F00) >> 8];
pix[2] = grays[(c2 & 0x00F0) >> 4];
pix[3] = grays[(c2 & 0x000F) ];
*bit = 0;
*bit2 = 0;
}
bit ++;
bit2++;
pix += 4;
c1 --;
}
}
ras.traceOfs = 0;
ras.traceG += ras.traceIncr;
ras.gray_min_x = ras.target.cols;
ras.gray_max_x = -ras.target.cols;
}
}
static void Horizontal_Gray_Sweep_Span( RAS_ARGS Short y,
TT_F26Dot6 x1,
TT_F26Dot6 x2,
PProfile left,
PProfile right )
{
/* nothing, really */
}
static void Horizontal_Gray_Sweep_Drop( RAS_ARGS Short y,
TT_F26Dot6 x1,
TT_F26Dot6 x2,
PProfile left,
PProfile right )
{
Long e1, e2;
PByte pixel;
Byte color;
/* During the horizontal sweep, we only take care of drop-outs */
e1 = CEILING( x1 );
e2 = FLOOR ( x2 );
if ( e1 > e2 )
{
if ( e1 == e2 + ras.precision )
{
switch ( ras.dropOutControl )
{
case 1:
e1 = e2;
break;
case 4:
e1 = CEILING( (x1 + x2 + 1) / 2 );
break;
case 2:
case 5:
/* Drop-out Control Rule #4 */
/* The spec is not very clear regarding rule #4. It */
/* presents a method that is way too costly to implement */
/* while the general idea seems to get rid of 'stubs'. */
/* */
/* rightmost stub test */
if ( left->next == right && left->height <= 0 ) return;
/* leftmost stub test */
if ( right->next == left && left->start == y ) return;
if ( ras.dropOutControl == 2 )
e1 = e2;
else
e1 = CEILING( (x1 + x2 + 1) / 2 );
break;
default:
return; /* unsupported mode */
}
}
else
return;
}
if ( e1 >= 0 )
{
if ( x2 - x1 >= ras.precision_half )
color = ras.grays[2];
else
color = ras.grays[1];
e1 = TRUNC( e1 ) / 2;
if ( e1 < ras.target.rows )
{
if ( ras.target.flow == TT_Flow_Down )
pixel = ras.gTarget +
(ras.target.rows - 1 - e1) * ras.target.cols + y / 2;
else
pixel = ras.gTarget +
e1 * ras.target.cols + y / 2;
if (pixel[0] == ras.grays[0])
pixel[0] = color;
}
}
}
#endif /* TT_CONFIG_OPTION_GRAY_SCALING */
/********************************************************************/
/* */
/* Generic Sweep Drawing routine */
/* */
/********************************************************************/
static Bool Draw_Sweep( RAS_ARG )
{
Short y, y_change, y_height;
PProfile P, Q, P_Left, P_Right;
Short min_Y, max_Y, top, bottom, dropouts;
Long x1, x2, xs, e1, e2;
TProfileList wait;
TProfileList draw_left, draw_right;
/* Init empty linked lists */
Init_Linked( &wait );
Init_Linked( &draw_left );
Init_Linked( &draw_right );
/* first, compute min and max Y */
P = ras.fProfile;
max_Y = (short)TRUNC( ras.minY );
min_Y = (short)TRUNC( ras.maxY );
while ( P )
{
Q = P->link;
bottom = P->start;
top = P->start + P->height-1;
if ( min_Y > bottom ) min_Y = bottom;
if ( max_Y < top ) max_Y = top;
P->X = 0;
InsNew( &wait, P );
P = Q;
}
/* Check the Y-turns */
if ( ras.numTurns == 0 )
{
ras.error = Raster_Err_Invalid;
return FAILURE;
}
/* Now inits the sweep */
ras.Proc_Sweep_Init( RAS_VARS &min_Y, &max_Y );
/* Then compute the distance of each profile from min_Y */
P = wait;
while ( P )
{
P->countL = P->start - min_Y;
P = P->link;
}
/* Let's go */
y = min_Y;
y_height = 0;
if ( ras.numTurns > 0 &&
ras.sizeBuff[-ras.numTurns] == min_Y )
ras.numTurns--;
while ( ras.numTurns > 0 )
{
/* look in the wait list for new activations */
P = wait;
while ( P )
{
Q = P->link;
P->countL -= y_height;
if ( P->countL == 0 )
{
DelOld( &wait, P );
switch ( P->flow )
{
case TT_Flow_Up: InsNew( &draw_left, P ); break;
case TT_Flow_Down: InsNew( &draw_right, P ); break;
}
}
P = Q;
}
/* Sort the drawing lists */
Sort( &draw_left );
Sort( &draw_right );
y_change = (Short)ras.sizeBuff[-ras.numTurns--];
y_height = y_change - y;
while ( y < y_change )
{
/* Let's trace */
dropouts = 0;
P_Left = draw_left;
P_Right = draw_right;
while ( P_Left )
{
x1 = P_Left ->X;
x2 = P_Right->X;
if ( x1 > x2 )
{
xs = x1;
x1 = x2;
x2 = xs;
}
if ( x2-x1 <= ras.precision )
{
e1 = FLOOR( x1 );
e2 = CEILING( x2 );
if ( ras.dropOutControl != 0 &&
(e1 > e2 || e2 == e1 + ras.precision) )
{
/* a drop out was detected */
P_Left ->X = x1;
P_Right->X = x2;
/* mark profile for drop-out processing */
P_Left->countL = 1;
dropouts++;
goto Skip_To_Next;
}
}
ras.Proc_Sweep_Span( RAS_VARS y, x1, x2, P_Left, P_Right );
Skip_To_Next:
P_Left = P_Left->link;
P_Right = P_Right->link;
}
/* now perform the dropouts _after_ the span drawing */
/* drop-outs processing has been moved out of the loop */
/* for performance tuning */
if (dropouts > 0)
goto Scan_DropOuts;
Next_Line:
ras.Proc_Sweep_Step( RAS_VAR );
y++;
if ( y < y_change )
{
Sort( &draw_left );
Sort( &draw_right );
}
}
/* Now finalize the profiles that needs it */
{
PProfile Q, P;
P = draw_left;
while ( P )
{
Q = P->link;
if ( P->height == 0 )
DelOld( &draw_left, P );
P = Q;
}
}
{
PProfile Q, P = draw_right;
while ( P )
{
Q = P->link;
if ( P->height == 0 )
DelOld( &draw_right, P );
P = Q;
}
}
}
/* for gray-scaling, flushes the bitmap scanline cache */
while ( y <= max_Y )
{
ras.Proc_Sweep_Step( RAS_VAR );
y++;
}
return SUCCESS;
Scan_DropOuts :
P_Left = draw_left;
P_Right = draw_right;
while ( P_Left )
{
if ( P_Left->countL )
{
P_Left->countL = 0;
/* dropouts--; -- this is useful when debugging only */
ras.Proc_Sweep_Drop( RAS_VARS y,
P_Left->X,
P_Right->X,
P_Left,
P_Right );
}
P_Left = P_Left->link;
P_Right = P_Right->link;
}
goto Next_Line;
}
/****************************************************************************/
/* */
/* Function: Render_Single_Pass */
/* */
/* Description: Performs one sweep with sub-banding. */
/* */
/* Input: _XCoord, _YCoord : x and y coordinates arrays */
/* */
/* Returns: SUCCESS on success */
/* FAILURE if any error was encountered during render. */
/* */
/****************************************************************************/
static TT_Error Render_Single_Pass( RAS_ARGS Bool flipped )
{
Short i, j, k;
while ( ras.band_top >= 0 )
{
ras.maxY = (Long)ras.band_stack[ras.band_top].y_max * ras.precision;
ras.minY = (Long)ras.band_stack[ras.band_top].y_min * ras.precision;
ras.top = ras.buff;
ras.error = Raster_Err_None;
if ( Convert_Glyph( RAS_VARS flipped ) )
{
if ( ras.error != Raster_Err_Overflow ) return FAILURE;
ras.error = Raster_Err_None;
/* sub-banding */
#ifdef DEBUG_RASTER
ClearBand( RAS_VARS TRUNC( ras.minY ), TRUNC( ras.maxY ) );
#endif
i = ras.band_stack[ras.band_top].y_min;
j = ras.band_stack[ras.band_top].y_max;
k = ( i + j ) / 2;
if ( ras.band_top >= 7 || k < i )
{
ras.band_top = 0;
ras.error = Raster_Err_Invalid;
return ras.error;
}
ras.band_stack[ras.band_top+1].y_min = k;
ras.band_stack[ras.band_top+1].y_max = j;
ras.band_stack[ras.band_top].y_max = k - 1;
ras.band_top++;
}
else
{
if ( ras.fProfile )
if ( Draw_Sweep( RAS_VAR ) ) return ras.error;
ras.band_top--;
}
}
return TT_Err_Ok;
}
/****************************************************************************/
/* */
/* Function: Render_Glyph */
/* */
/* Description: Renders a glyph in a bitmap. Sub-banding if needed. */
/* */
/* Input: AGlyph Glyph record */
/* */
/* Returns: SUCCESS on success. */
/* FAILURE if any error was encountered during rendering. */
/* */
/****************************************************************************/
LOCAL_FUNC
TT_Error Render_Glyph( RAS_ARGS TT_Outline* glyph,
TT_Raster_Map* target_map )
{
TT_Error error;
if ( glyph->n_points == 0 || glyph->n_contours <= 0 )
return TT_Err_Ok;
if ( !ras.buff )
{
ras.error = Raster_Err_Not_Ini;
return ras.error;
}
if ( glyph->n_points < glyph->contours[glyph->n_contours - 1] )
{
ras.error = TT_Err_Too_Many_Points;
return ras.error;
}
if ( target_map )
ras.target = *target_map;
ras.outs = glyph->contours;
ras.flags = glyph->flags;
ras.nPoints = glyph->n_points;
ras.nContours = glyph->n_contours;
ras.coords = glyph->points;
Set_High_Precision( RAS_VARS glyph->high_precision );
ras.scale_shift = ras.precision_shift;
ras.dropOutControl = glyph->dropout_mode;
ras.second_pass = glyph->second_pass;
/* Vertical Sweep */
ras.Proc_Sweep_Init = Vertical_Sweep_Init;
ras.Proc_Sweep_Span = Vertical_Sweep_Span;
ras.Proc_Sweep_Drop = Vertical_Sweep_Drop;
ras.Proc_Sweep_Step = Vertical_Sweep_Step;
ras.band_top = 0;
ras.band_stack[0].y_min = 0;
ras.band_stack[0].y_max = ras.target.rows - 1;
ras.bWidth = ras.target.width;
ras.bTarget = (Byte*)ras.target.bitmap;
if ( (error = Render_Single_Pass( RAS_VARS 0 )) != 0 )
return error;
/* Horizontal Sweep */
if ( ras.second_pass && ras.dropOutControl != 0 )
{
ras.Proc_Sweep_Init = Horizontal_Sweep_Init;
ras.Proc_Sweep_Span = Horizontal_Sweep_Span;
ras.Proc_Sweep_Drop = Horizontal_Sweep_Drop;
ras.Proc_Sweep_Step = Horizontal_Sweep_Step;
ras.band_top = 0;
ras.band_stack[0].y_min = 0;
ras.band_stack[0].y_max = ras.target.width - 1;
if ( (error = Render_Single_Pass( RAS_VARS 1 )) != 0 )
return error;
}
return TT_Err_Ok;
}
#ifdef TT_CONFIG_OPTION_GRAY_SCALING
/****************************************************************************/
/* */
/* Function: Render_Gray_Glyph */
/* */
/* Description: Renders a glyph with grayscaling. Sub-banding if needed. */
/* */
/* Input: AGlyph Glyph record */
/* */
/* Returns: SUCCESS on success */
/* FAILURE if any error was encountered during rendering. */
/* */
/****************************************************************************/
LOCAL_FUNC
TT_Error Render_Gray_Glyph( RAS_ARGS TT_Outline* glyph,
TT_Raster_Map* target_map,
Byte* palette )
{
Int i;
TT_Error error;
if ( !ras.buff )
{
ras.error = Raster_Err_Not_Ini;
return ras.error;
}
if ( glyph->n_points == 0 || glyph->n_contours <= 0 )
return TT_Err_Ok;
if ( glyph->n_points < glyph->contours[glyph->n_contours - 1] )
{
ras.error = TT_Err_Too_Many_Points;
return ras.error;
}
if ( palette )
{
for ( i = 0; i < 5; i++ )
ras.grays[i] = palette[i];
}
if ( target_map )
ras.target = *target_map;
ras.outs = glyph->contours;
ras.flags = glyph->flags;
ras.nPoints = glyph->n_points;
ras.nContours = glyph->n_contours;
ras.coords = glyph->points;
Set_High_Precision( RAS_VARS glyph->high_precision );
ras.scale_shift = ras.precision_shift+1;
ras.dropOutControl = glyph->dropout_mode;
ras.second_pass = glyph->second_pass;
/* Vertical Sweep */
ras.band_top = 0;
ras.band_stack[0].y_min = 0;
ras.band_stack[0].y_max = 2 * ras.target.rows - 1;
ras.bWidth = ras.gray_width;
if ( ras.bWidth > ras.target.cols/4 )
ras.bWidth = ras.target.cols/4;
ras.bWidth = ras.bWidth * 8;
ras.bTarget = (Byte*)ras.gray_lines;
ras.gTarget = (Byte*)ras.target.bitmap;
ras.Proc_Sweep_Init = Vertical_Gray_Sweep_Init;
ras.Proc_Sweep_Span = Vertical_Sweep_Span;
ras.Proc_Sweep_Drop = Vertical_Sweep_Drop;
ras.Proc_Sweep_Step = Vertical_Gray_Sweep_Step;
error = Render_Single_Pass( RAS_VARS 0 );
if (error)
return error;
/* Horizontal Sweep */
if ( ras.second_pass && ras.dropOutControl != 0 )
{
ras.Proc_Sweep_Init = Horizontal_Sweep_Init;
ras.Proc_Sweep_Span = Horizontal_Gray_Sweep_Span;
ras.Proc_Sweep_Drop = Horizontal_Gray_Sweep_Drop;
ras.Proc_Sweep_Step = Horizontal_Sweep_Step;
ras.band_top = 0;
ras.band_stack[0].y_min = 0;
ras.band_stack[0].y_max = ras.target.width * 2 - 1;
error = Render_Single_Pass( RAS_VARS 1 );
if (error)
return error;
}
return TT_Err_Ok;
}
#endif /* TT_CONFIG_OPTION_GRAY_SCALING */
/************************************************/
/* */
/* InitRasterizer */
/* */
/* Raster Initialization. */
/* Gets the bitmap description and render pool */
/* addresses. */
/* */
/************************************************/
#undef ras
LOCAL_FUNC
TT_Error TTRaster_Done( PEngine_Instance engine )
{
TRaster_Instance* ras = (TRaster_Instance*)engine->raster_component;
if ( !ras )
return TT_Err_Ok;
FREE( ras->buff );
FREE( ras->gray_lines );
#ifndef TT_CONFIG_OPTION_STATIC_RASTER
FREE( engine->raster_component );
#endif
return TT_Err_Ok;
}
LOCAL_FUNC
TT_Error TTRaster_Init( PEngine_Instance engine )
{
TT_Error error;
Int i, l, j, c;
TRaster_Instance* ras;
#ifdef TT_CONFIG_OPTION_STATIC_RASTER
ras = engine->raster_component = &cur_ras;
#else
if ( ALLOC( engine->raster_component, sizeof ( TRaster_Instance ) ) )
return error;
ras = (TRaster_Instance*)engine->raster_component;
#endif
if ( ALLOC( ras->buff, RASTER_RENDER_POOL ) ||
ALLOC( ras->gray_lines, RASTER_GRAY_LINES ) )
return error;
ras->sizeBuff = ras->buff + ( RASTER_RENDER_POOL/sizeof(long) );
ras->gray_width = RASTER_GRAY_LINES/2;
/* Initialization of Count_Table */
for ( i = 0; i < 256; i++ )
{
l = 0;
j = i;
for ( c = 0; c < 4; c++ )
{
l <<= 4;
if ( j & 0x80 ) l++;
if ( j & 0x40 ) l++;
j = ( j << 2 ) & 0xFF;
}
ras->count_table[i] = l;
}
ras->dropOutControl = 2;
ras->error = Raster_Err_None;
return TT_Err_Ok;
}
/* END */